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A simple procedure to obtain the derivative of the temperature integral with respect
to the activation energy is presented.

The integral kinetic Equation of non-isothermal kinetics [1-3]:

‘ dlo) A ; _E
— = RTd 1
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0 0

with the usual meanings of the notations and with 4 = const., E = const. and f («)
keeping its form unchanged for 0<a <1, is often used to evaluate the kinetic
parameters from a set of experimental data «; .,, and T; ., (i=1,2,..., N), N

being the total number of data points. Taking into account

a

da
) m = F(a) 2

where F(x) is the conversion integral, and introducing the notation:

KT,E) = Te‘EETdT )
0
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the following differences for the least squares method calculation can be considered
[4-6;:
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where G{ 7 T, 0, E )) is the solution of Eq. (1) with respect to «. It is known
N

that the kinetic parameters can be evaluated from the conditions of the minimum of
um &, or S,. [n order to perform the minimization, we need the partial derivatives

o
o
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B and ek Their calculation requires the derivatives T

Integrals such as I(T, E) will be called integrals dependent on cne parameter (in
particular E). For such integrals, the following theorem is valid [7-9]: if a function
a(x, 1), together with its partial derivative g(x, 4), is defined and continuous for

asx<bh
AgLAgh,
then the function

H(A) = ?g(x, Ay dx

has a continuous derivative with respect to A given by

d b
H'(D) =57 {g(x, 1) dx (6)
0r 5
H' ()= |g(x, 1)dx (6)

E .
As the function e ®T fuifils the requirements of the above-mentioned theorem:

T E
dKT, E) e RT
= 7
dE f g T ™
0
or: T 5
di(T, E) e RT
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Through integration by parts, the right-hand side of relationship (8) becomes

T E T T
e KT 1 (RT _E R _E
- = — = —e" — | —e RTdT 9
JRTdT R(Ee RT JEe > )]
Y 0

Introducing this result in (8), we obtain:

T

dI(T E) _ ( j

0

E E
“®id e"ﬁ) (10)

T E
In some cases [1, 2, 10-12], the integral | ¢ "RT dT is approximated as follows:
0

£ RT?

e RTdT =

KT Q(T, E) (11)

Oty Ny

where Q(T, E) is a function which changes slowly with temperature. A rough
approximation of Q(T, E) is unity.
Introducing (11) in (10), we obtain:

d(T,E) _ T _E(RT B
= 5¢ (E O(T, E) 1) (12)

a result which can be used in least squares calculations.

Conclusions
In order to facilitate the use of the least squares method to evaluate non-

isothermal kinetic parameters, a simple calculation of the derivative of the
temperature integral with respect to the activation energy was performed.
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